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1. Introduction

Trajectory planning algorithms seldom incorporate extensive knowledge of the interaction
between inverse dynamics and actuator torque limits into the planning process. Past efforts have
typically used fixed velocity limits of the joints as a way of determining how fast a trajectory
may be executed (81. Due to the complex relationship between joint velocities and dynamics,
such a procedure is at best a very coarse approximation of the true influence of actuator limits
on trajectory speed. An cxact method for determining the optimal velocity distribution for
a fixed path has been proposed in [131, where dynamic programming was straightforwardly
applied to minimize energy under actuator and dynamic constraints. The computational cost of
such optimization approaches however may prevent their useful application.

We develop a fundamental time-scaling property of manipulator dynamics that allows
trajectory planning and inverse dynamics to be exactly and efficiently coupled. The dynamic
realizability of a proposed trajectory can be readily determined, and a simple procedure to
modify the movement speed can be applied to render proposed trajectories realizable.

We presume that a time sequence of joint angles J(t) = (01(t), 02 (t), . ., 0,,(t)) for an n-joint
manipulator has been proposed by the trajectory planner, where t represents the time in the
interval 0 < t < tf. Because of fast recursive formulations of inverse dynamics [4, 7, 111, for
each sampling time t the joint torques n(t) = (n,(t), n 2(t),...,n,,(t)) corresponding to f(t)

can be efficiently found. The comparison of n(t) against motor torque limits is therefore readily
accomplished, and it is straightforward to determine whether the proposed trajectory can be
realized by the actuators.

A more difficult task is to ascertain how to change the trajectory in case motor torque limits
are violated. Here we consider only changing the speed at which a manipulator follows a path,
where by speed change is meant a constant scaling of the velocity profile so that the total
movement duration is scaled without changing the actual path through space. It is not sufficient
merely to slow down a trajectory, with the hope that a slower trajectory requires lower motor
torques, because some trajectories can only be realized at higher speeds, and some trajectories
may not be realizable at any speed. Moreover, unless one is careful to employ an algorithm such
as is presented here, then modifying the movement speed requires that the inverse dynamics be
recomputed from scratch.

The algorithm presented here determines what speed range is permissible for the proposed
trajectory given actuator torque limits. At the same time the nominal dynamics for the proposed
trajectory car be simply modified for the new trajectory, without dynamics recomputation.

-2. Time Scaling and Trajectories

Suppose that some trajectory plan P(t) has been fashioned. A new trajectory i(t) will be defined
such that .(t) = 9(r), where r = r(t) is a monotonically increasing function of time with
r(O) = 0 and r(ti) = t1 for some t, > 0. The function r(t) can be considered a time warp
which moves the arm along the same path but with a different time dependence, perhaps going

Mb1
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slower along some points of the path and faster along others. r(t) must increase monotonically

because time cannot reverse itself, and r(O) = 0 because the movement must start at the same
point.

To determine how the dynamics of the arm changes for the new trajectory, the time derivatives
of the joint angles are required. From the chain rule,

cdC(t) = d_() dr
dt dr dt

or. using the dot notation for time derivatives,

where d_(r)/dr has been written _(r) because it takes the value 9 evaluated at r(t). Similarly.

f(t) = i r)t(t)2 + i(r)f(t) (2)

The dynamic equations of motion can be compactly written 14] as

n(t) =-- l(O_(t))i(t) +i b(t). C(O(t)). - (t) -+ g(_(t)) (3)

where

n(t) is the n-dimensional vector of net joint torques corresponding to the movement
point,

1(!(t)) is the n X n generalized inertia tensor of the manipulator,

C(O(t)) is the n X n X n position-dependent tensor in the formulation of the Coriolis
and centripetal torques, and

g(_(t)) is the position-dependent n-dincnsional vector of gravity torques.

lhe notation for the velocity product term .. C. is slightly unconventional, but has been
adopted for compactness. ihe product C 0 is an n X n matrix with element ij as F Cijh.
which in turn is multiplied against _ to yield an n X I vector.

In the following derivations, the acceleration and velocity dependent torques are treated
separately and are designated as n.(t) = (nl(t), na2 (t), ... ,n,(t)), so that n(t) n.(t) +
g(e(t)). For the new trajectory i(t),

Substituting from (1) and (2), r

"i() = 1(9(,-))(r) + #(r) - +(r)1))(,r2)+ (5) 1
0

Rearranging and substituting from (3),

fi,(t) t 2.() + 1,(!_(r)) 0(r) (6) _1

A I and/or

Pat I

I -Jd/0
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Ibis is a potentially significant reformulation of dynamics, indicating how the underlying
dynamics changes when the time dimension of a trajectory changes. "lhe new torque i.(t) is
related to the old n(r) by the scaling factor P2 plus a term proportional to the generalized
momentum I(_(r)) (r) of.the manipulator. Note that the gravity torque g(j(t)) = g(9(r)) is
not scaled since it is position dependent only, which is the reason for the separation between
n.(t) and the gravity torques.

1I Constant Time Scaling

The simplest instance of (7) is when F(t) = 0, i.e., r(t) = et for some constant c > 0. If
c > 1 the movement is sped up; if c < I the movement is slowed down. Then

i.(t) = C2n.(ct) (7)

Interestingly, movement speed can be proportionally changed without affecting the underlying
dynamics very much, so long as the gravity contribution is separated from the acceleration and
velocity term contributions. 'lhe relation was also noted by Bcjzcy 111. Humans apparently adopt
such a strategy when changing movement speed, perhaps to simplify the dynamics computation
[51.

This relation also shows that the velocity and acceleration terms of the dynamics would have
the same significance relative to each other for all speeds of movement. For, the acceleration
term I(_(t))%t) is scaled by c2 from (2), and the velocity term i(t) C((t)) -(t) receives a
c factor for each b(i). 'lhus both terms change equally with differing movement speeds. This
contradicts the normal assumption in the robotics literature, where in designing control systems
workers typically throw out the velocity terms because they are a nonlinear product, with the
presumption that they are significant only at higher speeds of movement 11,101. For the slow
movement speeds of most manipulators, and hence because of the predominance of frictional
and gravitational effects, this is a reasonable assumption [2]. But for consistency the acceleration
terms should be thrown out as well since they share the same significance as the velocity terms,
yet this is not done. In any case, future generations of robots will contain examples of fast
manipulators with low joint friction whcre dynamic effccts, both acceleration and velocity terms,
are highly significant 121.

In tie remainder of this paper, we assume the special case (7) and use it to determine
allowable speeds of movement for a given trajectory. By allowable speed it is meant that the
trajectory is stretched or compressed uniformly to fit the allotted duration without changing
the path or the velocity profile shape. Constant scaling of velocity is a simple but important
method of bringing a trajectory within actuator constraints. Certainly there are many classes of
manipulatoJr trajectories where an exact path through space must be followed, as in straight-line
Cartesian motions of the manipulator hand 19, 121, but where the time dependence along the

S - path is not strongly restricted. While non-uniform time scaling may yield a realizable trajectory
where a constant scaling would not, results for the gencral case (6) arc not yet available while
other approaches [13] may be too computationally inefficient for routine use. Even more difficult

fl V
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is path modification under actuator and dynamic constraints, for which no general results are
yet available (see however [6] for an approximate time-optimal trajectory planning solution).

3. lime Scaling of Trajectories to Satisfy Torque Limitations

Torque limits of actuators restrict how fast a manipulator may move along a trajectory. In
order to determine whether a proposed trajectory J(t) violates actuator limits, the inverse
dynamics must be solved and the computed torques compared to these limits. Suppose we
have computed the acceleration and velocity dependent torques n=(t) separately from the
gravitational torques g(0(t)). Suppose further that the maximum and minimum torque limits,

= (n+ , n,2 ... , n+ ) and n- = (ny, ni-,.. ., n-) respectively, are constant throughout
a movement (Ordinarily one would presume n - = -n-) Later we consider velocity
dependencies as in electric torque motors.

At a given position O(t) of the manipulator, some of the actuator torque is required for
postural support of the manipulator only. In terms of what torque capability is remaining
to actually generate a movement, we formulate new effective torque limits by absorbing the
gravitational torques into the torque limits, i.e.,

n+(t) =n+ - g(j(t))

( n(t) =n- - g((t))

Note that the torque limits are now position dependent, and hence have been written as
functions of time.

Because we are looking for a time scaling value c that brings the trajectory within the
torque limits, a slight alteration of (7) is required. Since (7) holds for all times, we can write
i.(t/c) = c2n,(t) and the torque limits for the new trajectory as fi+(t/c) = n+(t). We require

that for the new trajectory i.(t/c) be bounded by fi-(tlc), which is done by finding the c that
bounds c2n.(t) by n±(t) according to the following procedure.

For each time t and joint i, we find the minimum and maximum scaling values of c2 that
satisfy the torque limits by solving (7) together with the computed torques n.i(t) and the torque
limits ni-(t) and nt(t). The result will be denoted by the interval [c?_(t), c-'(t)], where any
scaling value within this interval is a permissible movement speed for this joint at this point in
the trajectory. "Ibis scaling interval, however, may violate constraints at other joints and times,
and the permissible range of c values for the whole movement is found by intersecting all such
intervals:

1C = f, .+(t)I ()

We can then choose any value in the final interval [c-, c2+ to generate a movement which
satisfies the actuator constraints.
'To determine [c-(t), c?+(t)], there are three cases,

n

- ... . . ... ..-- ------ -
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Case 1: ,+(t) > o, n(t) < o.

LodWio C2-t)

,(t) > 0 0 n(t)/ni.,(t)

ni(t) = 0 0 00

n.,(t) < 0 0 ,-(t)/n.,(t)

Case 2: n (t) > 0, n7(t) > 0.

n .(t) > 0 ,,V(t)/n.,(t) ,nt(t)/.i(t)

nvi(t) < 0 unrealizable

Caw 3: ,t(t) < 0, n-(t) < A.

Condition (__
" ni (t) > 0 unrealizable

,n.,t) < 0 nt+(t)/n.,(t) n.(t)/n.,(t) i

To explain these cases, consider first case 1. The minimum value of c2 is zero because
nai(t) = 0 falls within actuator bounds and c2 must be non-negative. If n. (t) > 0, then
the appropriate torque limit for comparison is nt(t). because time scaling can change a
torque magnitude but not a sign. The maximum value of c2 is then determined by the ratio
n+(t)/n.i(t). Note that when n.i(t) < n+(t), then c2 > I and it is possible to speed the
movement up and still satisfy actuator constraints. When nv,(t) > n+(t), c < I and the
movement must be slowed down. To complete case 1, if n.(t) < 0, the appropriate torque
limit is ni-(t) and the maximum value of c2 is n-(t)/na(t).

In case 2. if ni(t) < 0, then this movement is unrealizable at any speed. The actuator
can produce only a positive torque, but a non-positive torque is required by the movemenL
Put simply, the manipulator cannot even hold itself up at this position. Of course manipulator
actuation is ordinarily designed to counteract gravity, but this actuation may become inadequate
if too heavy a load is picked un. For n.,(t) > 0, the maximum movement speed is determined

2, by the ratio nt(t)/n(t) and the minimum by n-(t)/n.,(t). It is possible that c-(t) > 0.
which says that there is a minimum non-zero speed at which die movement is realizable. Also
it is possible that c2-(t) > 1, so that the movement can be realized only by speeding up. Case
3 is analogous to case 2, except that the roles of n (t) and n-(t) are reversed due to sign
change.

'Mle intersection of all the intervals Ie-(t), c2+(t)] may be null, with incompatible scaling
requirements at different parts of the trajectory. This movement is then unrealizable at any

I~4
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Figure I
A planar two-link manipulator.

speed. If c2- > 1, then the movement should be speeded up by at least a factor c2- , while
if c2+ < I the movement should be slowed by at least a factor C2+ in order to produce a
realizable trajectory. Having chosen a c2 value, the inverse dynamics can be simply recomputed
from the old values of n(t) and g(g(t)) as follows:

i(t) = c2n.(ct) + g(_(ct)) (10)

The acceleration and velocity torques are amplitude scaled, the gravity torque is added in
separately, and both together are time scaled. Speed change can therefore be accomplished
without dynamics recomputation.

4. Examples

"This algorithm will be illustrated for straight-line movements by a two-link planar manipulator

(Figure 1): the algorithm is quite easily applied to manipulators with more degrees of freedom.
This manipulator has two rotary joints with joint angles 01 at the shoulder and 02 at the elbow.
'Mhe axes of rotation are both directed along the z-axis, so that the manipulator only generates
movement in the x-y plane. Gravity is presumed to act in the negative y direction with
magnitude g. The length, mass, and moment of inertia about the proximal joint for each link
are designated as 14, mi, and Ii respectively, where i = I refers to the upper arm link and
i = 2 refers to the forearm link. Each link is a uniform cylinder with radius R.

The equations of motion are [21:

21

* ~~2 = ~~I(I21+11 2 M~2 -~212 ) 

+ - s in02 + CO-- (U1 + 02) (11)



* ,+ r 11 + m21| + 12
E,j ,,,+, +,,,,2,,tOu, 4 + 2 1 j

+m1 + '-21 2 (12)

17i2112 h sirne 92- m21112*1 h3ain92

n ( 0 co( + 12 + C + m2) Co.et)

A common class of manipulator trajectories arc straight line movements of the tip, iLe.,
Vl - =0- (z - zo)(tti - Vt)/(zt - :o) for beginning and end positions of the tip (zo,, Yo)
and (x1, Vtt) respectively. To solve the inverse dynamics, it is required to transform from the
position, velocity, and acceleration of the tip to the position, velocity and acceleration for each
joint angle. These inverse kinematic equations are presented below [2]:

i4

+ VS2 -(-12

[ 1 1 [, .(,.i +,,2) -2 12 in( 2

+,[ n212 o1 + +- 1t2 S8 1  92

112 iri CO 9[ ( 2(15)

do ;L m~ +~ tos~n e - -tt n ose Llb ] 9 2)2] Frteln
TAre differentmmovments are illustratcd in the examples below: one that must be slowed

y straight yo n = moton -fo (zt - x0.5,-0.5) ingt) = (0.5,0) is to be generated
and a , con espctively To solvethenve rque dalimits for the actuators are set at n
positon, --el.9c , and accelon of - e kg-in. comparison between n+(t), r t) and

n.(t) is presented in Figure 2.

I X 2 + y I2 - 12I . ... .' i.. . i l i ...
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2.0._ __ _ __ _ 2.0-

o205

00 25 so 75 100 125
TIME (mIee)

0 0e

(a) (b)

Figure 2
Torque profils for a constant-velocity, straight-line trajectry of" 4 m/sec from (z, y) = (.5, -.S) to (.5,O)

when ,+ - = 6.9 kg-rn and n = -- = 2 kg-m. (a) Joint 1 minimum and maximum torques,

n,-(t) and n-+(t), and the velocity and acceleration torque ,.(t) are shown versus time: (b) corresponding
torque profiles for joint 2.

Joint 1 is represented by Figure 2a, where the torque requirements n1(t) for the complete

movement fall within the modified actuator constraints nj(t) and n+(t). For joint 2 in Figure

2b, however. the required torque n,2(t) falls below the lower actuator bound n-(t) for the

initial movement segment. This suggests that the movement must be slowed down. By scaling

the torque n, 2 (t) by a factor c2 < 1, the elements of the new torque ii,,2 (t) become larger

(i.e., less negative). The ii4 2(t) curve could then be made to lie completely above the n,(t)
curve, as if it had been shifted upwards.

Carrying out the computations in (9), it is found that [c2- , c2+  1 (0.582,0.745. The value

C2+ = 0.745 arises from joint 2 at time t = 0.035 sec., while the value c2- = 0.582 arises

from joint I at the same time. Thus the fastest speed at which this movement can be executed

is determined by 4,i.745 = 3.45 m/s. On the other hand, there is a non-zero lower speed

limit. 4 .58 = 3.05 m/s. Examining Figure 2a, if the movement is slowed too much, then

the n,1(t) curve is displaced upwards, intersecting the nj(t) curve and exceeding that upper
torque limit

4.2 A Movement Whose Speed Is Scaled Up

As shown above, if the movement speed falls under 3.05 m/s, then the actuator limits are

exceeded. This condition is verified here by considering the same movement but executed

at 2 m/s and by working through the algorithm. Figure 3a shows that the shoulder torque

nai(t) exceeds the upper actuator bound n+1 (t) at the beginning of the movement Calculations
show that for joint 1, c 2- = 2.329 at t = 0.035 s, so that the movement must be sped up

by 2%f.2 = 3.05 m/s as predicted. This would push the n.(t) curve down until it is

completely beneath n+(t). The curve n'(t) is the same as in Figure 2a, but has been left out

here to allow an expanded scale.
"bere is an upper limit of c2+ = 2.981 at t - 0.035 s as well, determined this time by

I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Figure 3
Torque profiles for a ccmstant-velocity, straight-line trajectory of 2 rn/sec with other conditions the same
as in Figure 2.

2.

Figured4
Joint 2 torque proffiles 1or the same movement as in Figure 3 except with a,+ 1 kg-rn.

joint 2 (Figure 3a). If the curve nz(t) is pushed down too far, it will violate the lower bound
ij-(i). Thus the ffastest this movement can be executed is 2V2-.98 = 3.45 rn/s. in agreement

- r with the first movement analysis.

4.3 An Unrealizable Movement

For the third movement, the conditions are the same as for the secoind movement, but dhe
* second actuator limits are now changed to n2 = - (t) = I kg-rn. As before, the actuaitor

limits on joint I (Figure 3a) require that the minimum speed for this movement be determined
by c2 - = 2.329. &ut Figure 4 shows that the joint 2 actuator limits prevent any higher speed
scaling than c2+ = 1.522, because n.2(t) would fall below ni-(t). Thius there are incompatible
scaling requireuwaw, aad this movement cannot be reialized at any speed.

S. Velocky-Dependent Motor Umuit

We have assumed above that the actuator limits n+ and n- are constant throughout the motion.
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In reality, the maximum actuator torque often does depend on velocity, such as for electric
torque motors. For the case of a low-inductance motor with no dissipative effects [31,

V = IR+Kw (16)

where V is the motor voltage, I is the motor current, R is the motor resistance, w is the
rotational speed of the motor, and K, is a constant of proportionality for the back-EMIF term.
The torque n produced by the motor is directly proportional to current:

n = KJ (17)

In voltage-control mode, for example in a chopping circuit where duty cycle is modulated,
there is an upper voltage limit Vm,, which can be applied to the motor. Because of the back-

EMF, the maximum current, and hence the maximum torque, is velocity dependent. Assuming
a gear ratio of I (otherwise absorb the gear ratio into KJ, then w = 0, where 6 is the velocity
of the joint actuated by the motor. Combining (16) and (17), and absorbing the gravity torque
g(P(t)) into the motor limit,

n+(t) = K-,., (,,z - K,i(t)) - 0(0))(8
R

If the trajectory is to be time-scaled by a factor c, then

ii+t)= V - K,,K, c() ((ct * )(9
RR

where unlike the dynamic terms there is a linear dependence on the scale factor c. When solving
for the scaling that satisfies the upper bound, again we need the relations fi.(t/c) = c n,(t)
and fi+(t/c) = n+(t). There is a quadratic equation in c when ii+(t/c) is replaced by C2n(t)
in (19):

n-(t)c R R c(t)--Vm + g(9(t))= 0 (20)

When solved,

, ( K(t)( (t) ± 1(KnlK.(t))2 +4lt(Vm:-(O))) (21)

The root which gives the largest positive c should be chosen for c2+. As before, it is possible
that there is no positive (or even real) root which indicates that the trajectory is unrealizable.
We may also solve (21) with Vni,, to find c2- . The procedure for determining the appropriate

- trajectory scaling factor then follows that indicated by (9).
The back-EMF can be considered a form of viscous friction, but if there were any additional

viscous friction at a joint or actuator, it could be handled in the same manner. As regards
Coulomb, or sliding, friction, it could be subtracted from the motor torque limits depending
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on the direction of movement, Le., sliding friction torque - -nfsgn(#(t)). Any actuator
springiness, which is position-dependent. could also be readily absorbed into the torque limits.
Motor inductance unfortunately seems to present an intractible problem, due to the need to
find the time derivative of the dynamic equation (3).

Conclusion

Trajectory planning and inverse dynamics may be efficiently coupled to reflect the exact influence
of actuator torque limits on execution capability. By factoring out gravity, a time-scaling property
of manipulator dynamics readily allows a realizable speed of movement for the whole trajectory
to be determined if there exists one. Rather than recomputing the dynamics corresponding to
a new trajectory speed from scratch, the dynamics of the new trajectory is obtained by a simple
linear combination of components of the original trajectory dynamics.

Velocity-dependent actuator limits, as well as various sources of joint friction, can be
accommodated in this scheme. An important side effect of the dynamic time scaling property is
that a ubiquitous assumption in manipulator control, namely that the velocity-product dynamic
terms are significant only at high speeds of movement, is false: these terms have the same
significance relative to the acceleration dynamic terms for all speeds of movement.

I
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